首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   108篇
  国内免费   181篇
安全科学   1篇
废物处理   2篇
环保管理   624篇
综合类   430篇
基础理论   73篇
污染及防治   12篇
评价与监测   55篇
社会与环境   63篇
灾害及防治   7篇
  2023年   11篇
  2022年   15篇
  2021年   28篇
  2020年   28篇
  2019年   35篇
  2018年   19篇
  2017年   38篇
  2016年   41篇
  2015年   58篇
  2014年   32篇
  2013年   76篇
  2012年   65篇
  2011年   67篇
  2010年   44篇
  2009年   54篇
  2008年   39篇
  2007年   43篇
  2006年   70篇
  2005年   50篇
  2004年   46篇
  2003年   56篇
  2002年   56篇
  2001年   32篇
  2000年   40篇
  1999年   30篇
  1998年   23篇
  1997年   21篇
  1996年   14篇
  1995年   18篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   2篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   4篇
  1970年   2篇
排序方式: 共有1267条查询结果,搜索用时 31 毫秒
31.
ABSTRACT: Detailed studies of long-term management impacts on rangeland streams are few because of the cost of obtaining detailed data replicated in time. This study uses government agency aquatic habitat, stream morphologic, and ocular stability data to assess land management impacts over four years on three stream reaches of an important rangeland watershed in northwestern Nevada. Aquatic habitat improved as riparian vegetation reestablished itself with decreased and better controlled livestock grazing. However, sediment from livestock disturbances and road crossings and very low stream flows limited the rate of change. Stream type limited the change of pool variables and width/depth ratio, which are linked to gradient and entrenchment. Coarse woody debris removal due to previous management limited pool recovery. Various critical-element ocular stability estimates represented changes with time and differences among reaches very well. Ocular stability variables tracked the quantitative habitat and morphologic variables well enough to recommend that ocular surveys be used to monitor changes with time between more intensive aquatic surveys.  相似文献   
32.
ABSTRACT: Streamflow for 67 years was simulated for Coon Creek at Coon Valley, Wisconsin, for three conditions in the drainage basin: (1) conditions in the 1930s; (2) conditions in the 1970s, excluding flood-detention reservoirs; and (3) conditions in the 1970s, including flood-detention reservoirs. These simulations showed that the changes in agricultural practices over 40 years (1940–80) reduced the 100-year flood by 53 percent (from 38,900 to 18,300 cubic feet per second). The flood-detention reservoirs reduced the 100-year flood by an additional 17 percent (to 15,100 cubic feet per second). The simulation was accomplished by calibrating a precipitation-runoff model to observed rainfall and runoff during two separate periods (1934–40 and 1978–81). Comparisons of model simulations showed that differences between the model calibrations for the two periods were statistically significant at the 95 percent confidence level.  相似文献   
33.
ABSTRACT: This paper presents an integrated optimal control model that optimizes economic performance of reservoir management in watersheds in which there are significant economic and hydrologic interdependencies. The model is solved using the General Algebraic Modeling System (GAMS). Results show that application of this model to New Mexico's Rio Chama basin can increase total system benefits over historical benefits by exploiting complementarities between hydroelectricity production, instream recreation, and downstream lake recreation.  相似文献   
34.
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   
35.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   
36.
ABSTRACT: Individual particle analysis (IPA) by scanning electron microscopy interfaced with automated image and X‐ray analyses was used to characterize inorganic particles in five reservoirs and four tributaries located within the Catskill and Delaware systems of the New York City water supply. Individual particle analysis provides combined elemental and morphologic characterizations. Results are presented in terms of particle projected area per unit volume (PAV), consistent with optical impacts, and partitioned into seven generic particle types according to composition. Minerals of terrigenous origins, particularly clay minerals, dominated the inorganic particle populations of all the study systems except one downstream reservoir. Higher PAV levels were observed in the Catskill system. Particle dynamics represented by PAV were driven primarily by runoff, while the reservoirs were also greatly influenced by the timing of sediment resuspension promoted by drawdown of the surface and fall mixing. The benefit of the serial configuration of the reservoirs in decreasing inorganic particles with progression downstream towards the city is demonstrated. The patterns in PAV levels among the study systems generally tracked those of more common metrics of impacts of suspensoids, including mass concentrations of suspended solids, turbidity, and Secchi disc transparency.  相似文献   
37.
ABSTRACT: In 1998 and 1999, third‐order watersheds in high mature forest (HMF) and low mature forest (LMF) classes were selected along gradients of watershed storage within each of two hydrogeomorphic regions in the Lake Superior Basin to evaluate threshold effects of storage on hydrologic regimes and watershed exports. Differences were detected between regions (North and South Shore) for particulates, nutrients, and pH, with all but silica values higher for South Shore streams (p < 0.05). Mature forest effects were detected for turbidity, nutrients, color, and alkalinity, with higher values in the LMF watersheds, that is, watersheds with less that 50 percent mature forest cover. Dissolved N, ammonium, N:P, organic carbon, and color increased, while suspended solids, turbidity, and dissolved P decreased as a function of storage. Few two‐way interactions were detected between region and mature forest or watershed storage, thus threshold based classification schemes could be used to extrapolate effects across regions. Both regional differences in water quality and those associated with watershed attributes were more common for third‐order streams in the western Lake Superior drainage basin as compared with second‐order streams examined in an earlier study. Use of ecoregions alone as a basis for setting regional water quality criteria would have led to misinterpretation of reference condition and assessment of impacts in the Northern Lakes and Forest Ecoregion.  相似文献   
38.
A study of a watershed planning process in the Cache River Watershed in southern Illinois revealed that class divisions, based on property ownership, underlay key conflicts over land use and decision-making relevant to resource use. A class analysis of the region indicates that the planning process served to endorse and solidify the locally-dominant theory that landownership confers the right to govern. This obscured the class differences between large full-time farmers and small-holders whose livelihood depends on non-farm labor. These two groups generally opposed one another regarding wetland drainage. Their common identity as “property owner” consolidated the power wielded locally by large farmers. It also provided an instrument – the planning document – for state and federal government agencies to enhance their power and to bring resources to the region. The planning process simultaneously ameliorated conflicts between government agencies and the large farmers, while enhancing the agencies’ capacity to reclaim wetlands. In this contradictory manner, the plan promoted the environmental aims of many small-holders, and simultaneously disempowered them as actors in the region’s political economy. An erratum to this article is available at .  相似文献   
39.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
40.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号